

## 

| Technical parameters | HRH-6/DC | HRH-6/AC |
| :---: | :---: | :---: |
| Function: | 2 |  |
| Voltage range: | 12.24VDC | $230 \mathrm{VAC} / 50-60 \mathrm{~Hz}$ |
| Burden: | max. 1.8 W | max. 3.8 VA |
| Max. dissipated power | 3 W |  |
| (Un+terminals: |  |  |
| Supply tolerance: | $\pm 20 \%$ | $-20 \% ;+10 \%$ |
| Measuring circuit |  |  |
| Sensitivity adiustable in the | min. $10 \mathrm{k} \mathrm{\Omega}$ |  |
| range*: | max. $200 \mathrm{k} \Omega$ |  |
| Voltage on probes: | max. 3 VaC |  |
| Probe cable maximum capacity: | 500 nF (for min. sensitivity), <br> 50 nF (for maximum sensitivity) |  |
|  |  |  |
| Time delay: | adjustable 1.10 s |  |
| Output | $6 \times$ LED (1x red, $1 \times$ yellow, $4 \times$ green) |  |
| Number of contacts: | $1 \times$ No-SPST (AgNi / Silver Alloy) |  |
| Current rating: | $10 \mathrm{~A} / \mathrm{AC1}$ |  |
| Switching voltage: | 2500 VA/AC1, $200 \mathrm{~W} / \mathrm{DC}$ |  |
| Peakcurrent: | $16 \mathrm{~A} /<35$ |  |
| Switching voltage: | $250 \mathrm{VAC} / 24 \mathrm{VDC}$ |  |
| Mechanical life (AC1): | $3 \times 10^{7}$ |  |
| Electrical life: | $0.7 \times 10^{5}$ |  |
| Other information |  |  |


| Other information |  |
| :--- | :---: |
| Operating temperature: | $-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4 \mathrm{~F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$ |
| Storage temperature: | $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| El. strength (supply - probes): | $\times \quad 3.75$ |
| Operating position: | any $\quad 3$ |

protection degree: Overvoltage category:
Dimensions:
Weight: Standards:

| any |  |
| :---: | :---: |
| 1P65 |  |
| $\times$ | III. |
| 2 |  |
| $110 \times 130 \times 72 \mathrm{~mm}\left(4.3^{\prime \prime} \times 5.1^{\prime \prime} \times 2.8\right)$ |  |
| $288 \mathrm{~g}(10.2 \mathrm{oz}$ ) | 385 g (13.6 oz.) |
| EN 60255-6, EN 61010-1 |  |
| see pg. 100 |  |

* Note: sensitivity is higher at both ends of a range of values.


Function 1 monitors minimal and maximal level depth, for example in fire engine cars, tanks etc.

- Function 2 monitors level depth in water collectors, basins, pools etc. - Selection of particular function is made by jumper on the front panel. - Level depth is indicated on the panel of device by LED.
- Device monitors 5 levels by using six probes (one probe is common) - Common probe can be replaced by a metal (conductive) tank.
- Level indicationby six LED's on the front panel of the device.
- It is possible to connect another indication module (e.g. in fire-engine

It is possible to connect another indication module (e.g.
cabin).
Adjustable sensitivity according to liquid conductvity.

- Adjustable sensitivity according to liquid conductvity.
Adjustable time delay - elimination of level movement, e.g. while tank is being filled up.
Measuring frequency 10 Hz to prevent polarization of liquid.
- Supply voltage 12.24 VDC (to be used in fire-engines) or galvanically - Supply voltage 12.24 VDC (to be used in fire-engines) or galvanically
separated 230 VAC for general use.
- Contact relay 10 A for signalization of full / empty tank (according to
a chosen function).
- Choicen of functiontions PUMP UP / OFF / PUMP DOWN by a switch located
on the front panel of the device.

Protection degree IP65.

Description
HRH-6/DC Basic unit

- evel L5 indication $\xrightarrow[\text { Evel L4 indication }]{\text { LeD }}$
 - level 1 indication - -levelL2indication - levelL1 indication ${ }_{\text {Lotage }}^{\text {Lindiciction }}$ -

HRH-6/S Auxiliary signalling
HRH-6/S Auxiliary signalling

Setup elements (inside basic unit)


## HRH-6 block connecting



* In case of HRH-6/DC, incoming supply is connected on terminals +Un and - Un.

Functions


This device monitors level of a conuctive liquid in a tank by using six single probes or one 6 -fold probe. In case you use a tank made of a conductive materia it is possible to use it as a common probe $C$.
This common probe is connected to a pole of supply (for fire-engines it means its body) in case of supply voltage 12.24 VDC
In case of supply voltage 230 V AC , the circuits are galvanically separated from the main.
The device is controlled by a three-position switch PUMP UP / OFF / PUMP DOWN. After switching into a position PUMP UP or PUMP DOWN, red LED1 shines and then also LED2.. LED6 according to liquid level. Output relay has 2 selectable functions.
Funtion setting is done by a jumper on basic board of HRH-6.
Function 1: (for use in fre-engines) - jumper is applied. In case of function PUMP UP and level reaching $L 5$, the relay controlling e.g. acustic signalization permanently closes and indicated ful tank. In case of PUMP DOWN function and level dropunder level $L 3$, relay priodically switches and under L2 it switche Function 2: (fincteres almost empty tank).
c.a (for keeping liquid level) - jumper is not applied. In case of PUMP UP, sensor is switched until liquid reaches level L5. Then relay opens and switche again in case the lliguid level falls under level L1. In case of PUMP DOWN - relay is switched until liquid falls under level L1. Then relay opens and switches again
on level L5. on level L5.
To eliminate LED flashing while level gurgle it is possible to delay reaction of probes (set delay $1 . .10 \mathrm{~s}$ ). According to conductivity of liquid it is possible to set sensitivity of probes (corresponding to"resistance" of fliquid).

